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Solutions to tutorial exercises for stochastic processes

T1. Let Z ~ Exp(1). Then Z has characteristic function
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where
Y(0) = log(1 — i6).
If we show that ¢ (0) satisfies the Lévy-Khinchin formula, then there exists a Lévy process
with Elexp(i6X1)] = exp(—1(#)), so that X; ~ Exp(1). The derivative of ) satisfies
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where we used Fubini’s theorem to switch the integrals. It follows that
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We now have
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where 7(dx) = Tips0y 5 ¢~ dz. Finally we have

P(0) =0 (1 — 1) + /OOO (1 — e —if2lery) m(dx).
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Moreover, 7 is a Lévy-measure:
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So () satisfies the Lévy-Khinchin formula with triplet (1 —1/e,0, 7).

T2. Let X; = Zn 1 Yy, where [V, is a Poisson process with intensity A and Y3, Ys,... areii.d.
random variables and independent of N. Let f(u) := E[e™¥1]. We have
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where we used Fubini’s theorem to switch the expectation and the summation. It follows
that the characteristic exponent ¢ of X, satisfies

P(u) = =A+Af(u).
Define the measure m on R by A +— AP(Y; € A). Then
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Furthermore we have
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We now choose a = AE[Y11yy,<1pp], and o = 0. It follows that
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= wAEM 1y, <] = A+ Af(u) — wAE[Y1 1y, 1cy] = = A+ Af(w),

so that X; has Lévy-khinchin triple (a,0, 7).
Suppose we have two Lévy-Khinchin triples (a, 02, 7) and (a, 52, %) with ¢(0) = ¥(6). If
we can show that limgy_,. Re <¢(9)) = -2 and limy_,» Re wg?) =&

02 5 % then it follows
that 02 = 2. We have
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Since 1 — cos(x) < z* we can bound
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which is integrable with respect to 7. So we can apply the dominated convergence theorem

to find 5(6) )
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Similarly we can compute the limit for 4(6).
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